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High-flow nasal oxygenation reduces the
risk of desaturation in adults receiving
procedural sedation: a meta-analysis of
randomized controlled trials
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Abstract

Background: Procedural sedation reduces patients’ discomfort and anxiety, facilitating performance of the
examination and intervention. However, it may also cause adverse events, including airway obstruction and
hypoxia. We conducted this systematic review and meta-analysis to evaluate the efficacy of high-flow nasal
oxygenation (HFNO) compared with that of standard oxygen therapy in adult patients undergoing procedural
sedation.

Methods: We identified randomized controlled trials published before November 2020 based on PubMed, Embase,
and Cochrane Library databases and ClinicalTrials.gov registry. Intraprocedural desaturation [peripheral oxygen
saturation (SpO2) < 90%] was evaluated as the primary outcome. The secondary outcomes were the lowest SpO2,
need for airway intervention, oxygen therapy-related complications, and patient, operator, and anesthetist’s
satisfaction.

Results: Six trials with a total of 2633 patients were reviewed. Patients using HFNO compared with standard
oxygen therapy had a significantly lower risk of intraprocedural desaturation [risk ratio 0.18, 95% confidence interval
(CI) 0.04-0.87]. The lowest intraprocedural SpO2 in HFNO group was significantly higher than that in standard
oxygen therapy group (mean difference 4.19%, 95% CI 1.74-6.65).

Conclusions: Compared with standard oxygen therapy, HFNO may reduce the risk of desaturation and increase the
lowest SpO2 in adult patients undergoing sedation for medical procedures.
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Background
Medical procedures cause anxiety, pain, and discomfort,
such as gastrointestinal endoscopy, bronchoscopy, and
dental treatment. These procedures are frequently per-
formed with sedation to reduce patients’ discomfort and
apprehension, contributing to a better quality of examin-
ation or intervention (Meining et al. 2007). Anesthetics
and analgesics used for sedation provide hemodynamic
stability by attenuating the autonomic stress response
(Gerstein et al. 2016). However, sedation itself may de-
crease respiratory drive, cause upper airway obstruction,
and thereafter hypoxia during procedures (Mason et al.
2019; Amornyotin 2013). Severe hypoxia prompts airway
intervention such as mask ventilation, thus interrupting
the procedure. Prolonged hypoxia may lead to cardiopul-
monary distress, bradycardia, permanent neurologic
damage, and even death (Shirota et al. 2020; Xiao et al.
2016; Qadeer et al. 2011; Wehrmann and Riphaus 2008).
Thus, it is crucial to prevent the occurrence of hypoxia
while providing an adequate depth of sedation.
In procedural sedation, patients generally receive sup-

plemental oxygen to reduce the risk of desaturation.
Nasal cannulas and simple masks are conventionally rec-
ognized as standard oxygen therapy to deliver oxygen at
a maximum of 15 L/min. Currently, high-flow nasal oxy-
gen device produces heated and humidified oxygen and
enables oxygen comfortably delivered at a rate up to 70
L/min (Spoletini et al. 2015). Compared with standard
oxygen therapy, high-flow nasal oxygenation (HFNO) al-
lows for rapid carbon dioxide washout (i.e., dead space
washout), maintains a constant fraction of inspired oxy-
gen (FiO2), produces a positive end-expiratory pressure,
reduces respiratory effort, and improves patient comfort
(Helviz and Einav 2018; Lee et al. 2016). A meta-analysis
recently reported that HFNO may reduce hypoxia and
increase minimum O2 saturation during intraoperative
period (Spence et al. 2020). However, it remains unclear
whether HFNO is more effective in preventing occur-
rence of desaturation in the setting of procedural sed-
ation compared to standard oxygen therapy.
Accordingly, we conducted a systematic review and
meta-analysis to compare the efficacy of oxygenation be-
tween HFNO and standard oxygen therapy in patients
undergoing procedural sedation.

Methods
Criteria of study selection
We included randomized controlled trials (RCTs) com-
paring HFNO and standard oxygen care in patients
undergoing sedation for diagnostic or interventional pro-
cedures in which endotracheal intubation or a supraglot-
tic device was not necessary. In the study selection, we
adopted the definition of sedation and general anesthesia
by the American Society of Anesthesiologists,

Committee on Quality Management and Departmental
Administration 2019 (American Society of Anesthesiolo-
gists, Committee on Quality Management and Depart-
mental Administration 2019). Specifically, sedation is a
drug-induced depression of consciousness; patients are
arousable and have a purposeful response to verbal, tact-
ile, or painful stimulation (American Society of Anesthe-
siologists, Committee on Quality Management and
Departmental Administration 2019). By contrast, pa-
tients under general anesthesia are unarousable even by
painful stimulation and frequently have inadequate
spontaneous ventilation, necessitating airway interven-
tion (American Society of Anesthesiologists, Committee
on Quality Management and Departmental Administra-
tion 2019). Studies were also required to clearly report
the inclusion and exclusion criteria for patients, medical
procedures, sedation techniques, and oxygenation strat-
egy. Studies were excluded for the following reasons: (1)
inclusion of pediatric patients, defined as younger than
18 years old, (2) inclusion of critically ill patients who
had respiratory failure and required endotracheal intub-
ation, and (3) comparison of respiratory support at the
time of endotracheal extubation.

Search strategy
We searched relevant studies published before Novem-
ber 2020 from the PubMed, Embase, and Cochrane Li-
brary databases using the following Medical Subject
Headings: (high-flow OR high flow nasal) AND (sed-
ation). The “related articles” option in PubMed was used
to broaden the search, and all abstracts, studies, and ci-
tations retrieved were reviewed. In addition, we identi-
fied other studies by using the reference sections of
relevant papers and by corresponding with subject ex-
perts. Finally, unpublished studies were collected from
the ClinicalTrials.gov registry (http://clinicaltrials.gov/).
No language restriction was applied. The systematic re-
view described herein has been accepted by PROSPERO,
an online international prospective register of systematic
reviews curated by the National Institute for Health Re-
search (CRD42020203175).

Data extraction
Baseline and outcome data were independently retrieved
by two reviewers (H.Y.L. and J.T.C.), who extracted the
following data: study designs, patient characteristics, in-
clusion and exclusion criteria, medical procedures, sed-
ation techniques, oxygenation strategy, intraprocedural
desaturation events, lowest O2 saturation, need for air-
way intervention, patient, operator, and anesthetist satis-
faction, and oxygen therapy-related complications.
Decisions recorded individually by the reviewers were
compared, and disagreements were resolved by a third
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reviewer (K.W.T.). The authors of the studies were con-
tacted for additional information if needed.

Appraisal of methodological quality
Two reviewers (H.Y.L. and J.T.C.) independently
assessed the methodological quality of each study by
using the risk of bias method recommended by The
Cochrane Collaboration (Higgins et al. 2011). The fol-
lowing domains were assessed: adequacy of
randomization, allocation concealment, outcome asses-
sor blinding to patient information, follow-up duration,
information provided to participants regarding study
withdrawal, whether intention-to-treat analysis was per-
formed, and freedom from other biases.

Outcomes of interest
Primary outcome was the event of desaturation (SpO2 <
90%) during the procedure. Secondary outcomes were
(1) the lowest SpO2, (2) need for airway intervention, in-
cluding chin lift, jaw thrust, bag mask ventilation, inser-
tion of a nasal or oral airway, and endotracheal
intubation, (3) oxygen therapy-related complications,
and (4) patient, operator, and anesthetist satisfaction.

Statistical analyses
Data were analyzed using Review Manager (version 5.3;
The Cochrane Collaboration, Oxford, England, UK).
Meta-analysis was performed following PRISMA guide-
lines (Moher et al. 2009). Mean and standard deviations
(SD) were estimated from the provided median and
interquartile range (IQR) (Luo et al. 2018; Shi et al.
2020). Dichotomous outcomes (desaturation event, need
for airway intervention, and oxygen therapy-related
complications) were presented as proportions or ratios
and analyzed using risk ratios (RRs) as the summary
statistic. The effect sizes of continuous outcomes were
reported as the weighted mean difference (WMD) [95%
confidence interval (CI)]. A pooled estimate of the RR
and WMD was computed using the DerSimonian and
Laird random effect models (DerSimonian and Laird
1986).
Statistical heterogeneity and the inconsistency of treat-

ment effects across studies were evaluated using
Cochrane Q test and I2 statistics, respectively. Statistical
significance was set at p < 0.10 for Cochrane Q test.
Statistical heterogeneity across studies was assessed
using the I2 test, which quantifies the proportion of the

Fig. 1 Flowchart of study selection
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total outcome variability across the studies. Moreover,
subgroup analyses were performed with obese and non-
obese patients and eliminated the result of Riccio and
colleagues due to their study population restricted to the
obese (Riccio et al. 2019).

Results
Trial characteristics
Figure 1 illustrates the flowchart of trial screening and
selection. The initial search yielded 90 citations, of which
66 were deemed ineligible based on title and abstract
screening. Next, the full texts of 24 studies were re-
trieved. Most of them (n = 18) were excluded for the fol-
lowing reasons: 3 included pediatric populations; 7
focused on patients with respiratory failure; 8 evaluated
patients following endotracheal extubation. Six studies
were finally included for analysis (Riccio et al. 2019;
Ben-Menachem et al. 2020; Douglas et al. 2018; Lin
et al. 2019; Teng et al. 2019; Sago et al. 2015).
These six trials were published between 2015 and

2020, with sample sizes ranging from 30 to 1994. Two of
them recruited patients for bronchoscopy (Ben-

Menachem et al. 2020; Douglas et al. 2018), two for
upper gastrointestinal endoscopy (Lin et al. 2019; Teng
et al. 2019), one for colonoscopy (Riccio et al. 2019), and
one for dental treatment (Sago et al. 2015). One trial re-
cruited patients with morbid obesity [mean body mass
index (BMI) 48.5 kg/m2) (Riccio et al. 2019) and five re-
cruited patients with mean BMI < 28 kg/m2 (Ben-Mena-
chem et al. 2020; Douglas et al. 2018; Lin et al. 2019;
Teng et al. 2019; Sago et al. 2015). For the HFNO group,
all trials set the flow rate at 30–70 L/min; FiO2 was
100% in three trials (Douglas et al. 2018; Lin et al. 2019;
Teng et al. 2019), 36 to 40% in two trials (Riccio et al.
2019; Sago et al. 2015), and not mentioned in one trial
(Ben-Menachem et al. 2020). For the standard oxygen
therapy group, all trials set the flow rate at 2 to 10 L/
min; the oxygen was delivered through a nasal cannula
in five trials (Riccio et al. 2019; Ben-Menachem et al.
2020; Lin et al. 2019; Teng et al. 2019; Sago et al. 2015)
and through bite block in one (Douglas et al. 2018). Sago
and colleagues divided the HFNO group into two with
respect to the flow rate (30 L/min and 50 L/min) and
compared them separately with the standard oxygen

Table 1 Characteristics of the selected randomized controlled trials

Authors
(year)

Inclusion
criteria

No. of
patients
(male, %)

Age,
years
[mean
(SD)]

BMI
[mean
(SD)]

Sedation technique and level of sedation Oxygenation strategy

Riccio et al.
(2019)

BMI > 40 for
elective
colonoscopy

H: 28 (14)
S: 31 (13)

H: 54 (8)
S: 59 (7)

H: 48
(7)
S: 49
(10)

Induction with lidocaine up to 100 mg + propofol 30–
100 mg. Maintenance with propofol 120–150 μg/kg/
min ideal body weight. Keep RASS −3 to −4.

H: FiO2 36–40%, up to 60
L/min
S: FiO2 36–40%, 4 L/min
via N/C

Ben-
Menachem
et al. (2020)

Age ≥ 18, lung
transplant
recipients, for
TBLB

H: 37 (60)
S: 39 (74)

H: 55
(12)
S: 56 (12)

H: 25
(4)
S: 25
(4)

Premedication with midazolam 1–3 mg.
Induction and maintenance with propofol and
alfentanil.

H: 30–50 L/min
S: 4–10 L/min via N/C

Douglas
et al. (2018)

Age ≥ 18, for
endobronchial
ultrasound

H: 30 (63)
S: 30 (63)

H: 63
(14)
S: 63 (14)

H: 27
(6)
S: 27
(6)

Induction and maintenance with midazolam, opioids,
and/or propofol.
Keep MOAA/S equal to 4.

H: FiO2 100%, start with
30 L/min, then 30–70 L/
min after sedation
S: 10–15 L/min via a bite
block

Lin et al.
(2019)

Outpatients for
elective
gastroscopy

H: 994
(42)
S: 1000
(41)

H: 48
(19)
S: 47 (19)

H: 23
(3)
S: 23
(3)

Induction and maintenance with intermittent boluses of
propofol 0.5 mg/kg.
Keep RSS > 4.

H: start with 2 L/min via
N/C, then FiO2 100%, 60
L/min after sedation
S: 2 L/min via N/C

Teng et al.
(2019)

Age 20-80, ASA
class I or II, for
outpatient EGD

H: 50 (38)
M: 51 (37)
S: 51 (43)

H: 47
(15)
M: 51
(12)
S: 52 (13)

H: 23
(4)
M: 23
(4)
S: 23
(4)

Induction with midazolam 0.05 mg/kg + alfentanil 0.2
μg/kg. Maintenance with TCI of propofol.
Keep MOAA/S < 2.

H: FiO2 100%, 30 L/min
M: 5 L/min direct to nose
and mouth
S: 5 L/min via N/C

Sago et al.
(2015)

For dental
treatment under
sedation

H1: 10
(NR)
H2: 10
(NR)
S: 10 (NR)

H1: 37
(12)
H2: 39
(11)
S: 40 (15)

H1: 22
(3)
H2: 22
(3)
S: 23
(3)

Induction with midazolam 0.05 mg/kg + TCI of
propofol. Maintenance with TCI of propofol, plasma
concentration 1.2–2 μg/mL. Keep bispectral index 70.

H1: FiO2 40%, 30 L/min
H2: FiO2 40%, 50 L/min
S: 5 L/min via N/C

Abbreviations: ASA American Society of Anesthesiologists, BMI body mass index, EGD esophagogastroduodenoscopy, FiO2 fraction of inspired oxygen, H high-flow
nasal oxygenation, M mandibular advancement device, MOAA/S Modified Observer’s Assessment of Alertness/Sedation Scale, N/C nasal cannula, NR not reported,
RASS Richmond Agitation-Sedation Scale, RSS Ramsay Sedation Scale, S standard oxygen therapy, TBLB transbronchial lung biopsy, TCI, target continuous infusion
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therapy group (Sago et al. 2015). We combined the two
HFNO groups in our analysis. Two trials used propofol
as the sedative agents (Riccio et al. 2019; Lin et al. 2019);
one used propofol with midazolam (Sago et al. 2015);
two used propofol with midazolam and alfentanil (Ben-
Menachem et al. 2020; Teng et al. 2019); one used mid-
azolam, opioids, and/or propofol at the anesthetist’s dis-
cretion (Douglas et al. 2018). Baseline patient
characteristics were balanced between HFNO group and
standard oxygen therapy group in all included trials
(Table 1).
Table 2 summarizes the methodological quality of the

included trials. All studies had acceptable methods of
randomization. Three used intention-to-treat analysis
(Riccio et al. 2019; Douglas et al. 2018; Sago et al. 2015),
and the other three used per-protocol analysis (Ben-
Menachem et al. 2020; Lin et al. 2019; Teng et al. 2019).
The proportion of patients lost to follow-up was accept-
able (< 20%) in all trials. Participants were not blinded in
any trial owing to the study design.

Desaturation event
Five trials compared intraprocedural desaturation events
between HFNO and standard oxygen therapy (Riccio
et al. 2019; Ben-Menachem et al. 2020; Douglas et al.
2018; Lin et al. 2019; Teng et al. 2019). Four trials de-
fined desaturation or hypoxic events as SpO2 < 90%
(Riccio et al. 2019; Ben-Menachem et al. 2020; Douglas
et al. 2018; Teng et al. 2019). Lin and co-workers catego-
rized low-SpO2 events into subclinical respiratory de-
pression (SpO2, 90 to 94%), hypoxia (SpO2, 75 to 89%
for < 60 s), and severe hypoxia (SpO2, < 75% or 75 to
89% for > 60 s) (Lin et al. 2019). For this study (Lin et al.
2019), we considered hypoxic and severe hypoxic events
as desaturation events in the data synthesis. HFNO was
associated with a significantly lower risk of intraproce-
dural desaturation (RR, 0.18, 95% CI, 0.04-0.87) com-
pared with standard oxygen therapy (Fig. 2). Subgroup

analysis revealed that the reduced risk of HFNO was
augmented for nonobese patients (RR, 0.11, 95% CI,
0.02-0.65).

Lowest SpO2

Four trials compared the intraprocedural lowest SpO2

between HFNO and standard oxygen therapy (Riccio
et al. 2019; Ben-Menachem et al. 2020; Douglas et al.
2018; Sago et al. 2015). Two reported the data as mean
and SD (Riccio et al. 2019; Sago et al. 2015), and two as
median and IQR (Ben-Menachem et al. 2020; Douglas
et al. 2018). Therefore, mean and SD were estimated
from the provided median and IQR (Luo et al. 2018; Shi
et al. 2020). Sago and colleagues presented the values as
a figure of mean and SD, and the statistic number was
estimated from the scale on the figure (Sago et al. 2015).
The intraprocedural lowest SpO2 of HFNO group was
significantly higher than that of standard oxygen therapy
group (WMD, 4.19%, 95% CI, 1.74-6.65) (Fig. 3). Sub-
group analysis showed a larger difference (WMD, 4.99%,
95% CI, 2.34-7.63) between groups for nonobese
patients.

Need for airway intervention
Five trials compared the incidence of airway intervention
between HFNO and standard oxygen therapy (Riccio
et al. 2019; Ben-Menachem et al. 2020; Lin et al. 2019;
Teng et al. 2019; Sago et al. 2015). Timing of airway
intervention was set at SpO2 < 94% or obvious airway
obstruction (Ben-Menachem et al. 2020), SpO2 < 95%21,
SpO2 < 90%19, SpO2 < 95% for > 1 min24, and not men-
tioned in two trials (Ben-Menachem et al. 2020; Teng
et al. 2019). Four trials reported the number of patients
who received airway intervention (Riccio et al. 2019; Lin
et al. 2019; Teng et al. 2019; Sago et al. 2015), and one
reported the number of interventions for each patient
(Ben-Menachem et al. 2020). The result of Ben-
Menachem and colleagues was not comparable and was

Table 2 Methodological quality assessment of the included trials

Authors (year) Bias from
randomization
process

Deviations from
intended interventions

Bias caused by
missing outcome
data

Bias in outcome
measurement

Bias in selection of
reported results

Overall
risk of
bias

Riccio et al.
(2019)

Low risk Some concerns Low risk Low risk Low risk Some
concerns

Ben-Menachem
et al. (2020)

Low risk Some concerns Low risk Low risk Low risk Some
concerns

Douglas et al.
(2018)

Low risk Some concerns Low risk Low risk Low risk Some
concerns

Lin et al. (2019) Low risk Low risk Low risk Low risk Low risk Low risk

Teng et al.
(2019)

Some concerns Low risk Low risk Low risk Low risk Some
concerns

Sago et al.
(2015)

Some concerns Some sconcerns Low risk Low risk Low risk Some
concerns
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thus excluded from our meta-analysis (Ben-Menachem
et al. 2020). There was no significant difference in the
risk of airway intervention between groups (RR, 0.18,
95% CI, 0.01-2.52) (Fig. 4). Subgroup analysis revealed
that HFNO was linked to a lower risk of airway inter-
vention compared to standard oxygen therapy in nonob-
ese patients (RR, 0.09, 95% CI, 0.02-0.36).

Complications
Three trials evaluated oxygen therapy-related complica-
tions (Douglas et al. 2018; Lin et al. 2019; Teng et al.
2019). No complication was reported in either group in
one trial (Douglas et al. 2018). Lin and co-workers re-
ported that 17 patients in the HFNO group experienced
dry nasal mucosa or nasal pain and provided no descrip-
tion of complications in the standard oxygen therapy
group (Lin et al. 2019). Teng and colleagues reported
that 2 patients had nasal dryness and itching in the
standard oxygen therapy group and none in the HFNO
group (Teng et al. 2019). Considering the inconsistent
evaluation of related complications in these trials, we did
not compare oxygen therapy-related complications be-
tween groups.

Satisfaction of patients, operators, and anesthetists
Three trials compared patient satisfaction between
HFNO and standard oxygen therapy (Ben-Menachem
et al. 2020; Douglas et al. 2018; Sago et al. 2015), and no

significant difference was noted between groups (WMD,
−0.02, 95% CI, −0.19 to 0.14).
Three trials compared operator satisfaction between

HFNO and standard oxygen therapy (Ben-Menachem
et al. 2020; Douglas et al. 2018; Sago et al. 2015). Satis-
faction was measured using a 5-point scale ranging from
1 (very dissatisfied) to 5 (very satisfied) in two trials
(Ben-Menachem et al. 2020; Sago et al. 2015). One trial
used the rating in opposite directions (Douglas et al.
2018), and the results were converted into the same dir-
ection as those of the other two trials. No significant dif-
ference was observed in operator satisfaction between
groups (WMD, 0.11, 95% CI, −0.25 to 0.46).
Two trials compared anesthetist satisfaction between

HFNO and standard oxygen therapy (Ben-Menachem
et al. 2020; Douglas et al. 2018). One trial demonstrated
that HFNO had significantly better anesthetist satisfac-
tion than standard oxygen therapy (4-5 vs. 2-4, p <
0.001) (Ben-Menachem et al. 2020). However, another
study observed no difference between groups (p = 0.28)
(Douglas et al. 2018). Meta-analysis showed no signifi-
cant difference in anesthetist satisfaction between groups
(WMD, 1.0, 95% CI, −0.76 to 2.76).

Discussion
Our analysis showed that HFNO was associated with a
reduced risk of desaturation compared to standard oxy-
gen therapy in procedural sedation. In addition, patients

Fig. 2 Forest plot of the comparison of desaturation event between HFNO and standard oxygen therapy groups

Fig. 3 Forest plot of the comparison of lowest SpO2 between HFNO and standard oxygen therapy groups
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using HFNO had higher minimum SpO2 than standard
oxygen therapy. However, there was no significant differ-
ence in the risk of airway intervention, oxygen therapy-
related complications, patient, operator, or anesthetist
satisfaction. Our findings support that HFNO may serve
as a better oxygenation technique to prevent the occur-
rence of hypoxia compared to conventional oxygen ther-
apy in patients undergoing sedation for medical
procedures.
Several systematic reviews have studied the effect of

HFNO in the perioperative period (Spence et al. 2020;
Chaudhuri et al. 2020). Spence and colleagues demon-
strated that in the intraoperative period, HFNO reduces
the risk of O2 desaturation and increases minimum O2

saturation and safe apnea time compared with conven-
tional oxygenation, consistent with our results (Spence
et al. 2020). In contrast, Chaudhuri and co-workers fo-
cused on the peri-intubation period and found that
HFNO is not associated with severe desaturation, serious
complications, apneic time, length of intensive care unit
stay, or overall survival (Chaudhuri et al. 2020). The au-
thors analyzed severe desaturation defined as SpO2 <
80%, which is likely to have a lower rate compared to
our definition SpO2 < 90% (Chaudhuri et al. 2020). In
addition, their analyses mixed perioperative non-
hypoxemic patients and critically ill hypoxemic patients
(Chaudhuri et al. 2020). Underpowered statistics and
heterogeneous populations may explain the non-
significant difference in desaturation risk between
HFNO and standard oxygen therapy.
Obesity is associated with increased sedation-related

complications, including hypoxia (Kilic et al. 2019; Jira-
pinyo and Thompson 2016). Most trials in our analysis
recruited patients with BMI < 28 kg/m2, except for the
study of Riccio and colleagues (Riccio et al. 2019). Our
subgroup analyses indicated that the reduced desatur-
ation risk and higher minimum SpO2 associated with
HFNO were augmented in nonobese patients. Similarly,
the intergroup difference in need for airway intervention
was only significant in nonobese patients. Conversely, a
recent clinical trial demonstrated that HFNO achieved a

longer safe apnea time and higher minimum SpO2 com-
pared to facemask oxygenation in patients with morbid
obesity undergoing anesthesia induction (Wong et al.
2019). More studies are required to determine whether
HFNO is effective in preventing desaturation in obese
patients undergoing procedural sedation.
The depth of sedation may have an influence on

respiratory-related complications (American Society of
Anesthesiologists, Committee on Quality Management
and Departmental Administration 2019). Deep sedation
may exert a higher risk of hypoventilation, airway ob-
struction, and desaturation, particularly when propofol is
used as the primary sedative (Sheahan and Mathews
2014). Our selected studies used different assessment
tools for depth of sedation. Two trials maintained the
patients at moderate sedation with Modified Observer’s
Assessment of Alertness/Sedation Scale (MOAA/S)
equal to 4 and Ramsay Sedation Scale > 4 (Douglas et al.
2018; Lin et al. 2019); one trial maintained the patients
at moderate-to-deep sedation with Richmond Agitation-
Sedation Scale of −3 to −4 (Riccio et al. 2019); two trials
maintained deep sedation with bispectral index around
70 and MOAA/S < 2 (Teng et al. 2019; Sago et al. 2015).
However, the available data were insufficient for sub-
group analysis. Further research should evaluate the ef-
fect of varying depths of sedation on the effectiveness of
HFNO in oxygenation and prevention of desaturation.
The use of higher FiO2 itself may reduce risk of desatur-

ation in procedural sedation. A nasal cannula with an oxy-
gen flow rate of 4 to 10 L/min provides FiO2 30 to 35%,
and oxygen through bite block with a flow rate of 10 L/min
provides FiO2 approximately 35% (Ting et al. 2012). In our
analysis, only two trials used the same FiO2 in both groups
(Riccio et al. 2019; Sago et al. 2015), and three trials used
FiO2 100% in the HFNO group (Douglas et al. 2018; Lin
et al. 2019; Teng et al. 2019). The difference in applied FiO2

between groups may confound the effect of oxygenation
techniques on desaturation risk. Nevertheless, HFNO may
improve oxygen delivery by minimizing oxygen dilution
and reducing dead space compared to conventional oxygen
therapy regardless of FiO2 (Lee et al. 2016).

Fig. 4 Forest plot of the comparison of need for airway intervention between HFNO and standard oxygen therapy groups
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Our study covered the procedures requiring sedation,
including gastrointestinal endoscopy, bronchoscopy, and
dental treatments. Although these procedures are typic-
ally performed outside the operating room, patients with
the potential to convert to conventional surgery or gen-
eral anesthesia may undergo these procedures in the op-
erating room (Youn et al. 2015). In addition, operations
undertaken with a varying level of sedation are also
common in the operating room. The oxygenation strat-
egy to prevent desaturation is of equal importance to
these procedures and operations, especially in the field
of airway management.
Our study has several limitations. First, some trials

had a small sample size of 10 per treatment group (Sago
et al. 2015). Second, it is difficult to conduct a meta-
analysis for some outcomes due to insufficient data, such
as oxygen therapy-related complications. Third, the sat-
isfaction score was subjective and was likely to be biased
as the participants were not blinded to assigned inter-
vention. Fourth, the cost of HFNO is much higher than
conventional oxygen therapy, but we did not analyze
cost effectiveness (Eaton Turner and Jenks 2018). Fifth,
there is considerable heterogeneity in the type and dos-
age of sedative agents and patients’ baseline clinical con-
ditions among the included trials. Finally, pediatric,
hypoxemic, and extubated patients were excluded from
the analysis. Therefore, our results are not applicable to
these populations.

Conclusions
Our systematic review and meta-analysis demonstrated
that HFNO may reduce the risk of desaturation and in-
crease the lowest SpO2 in patients receiving sedation for
medical procedures compared to standard oxygen ther-
apy. HFNO can be considered as the choice of oxygen
therapy in procedural sedation. Future studies should
focus on high-risk patients, such as those with respira-
tory distress and morbid obesity.
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