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Can a deep learning model based on
intraoperative time-series monitoring data
predict post-hysterectomy quality of
recovery?
Xu Zhao1,2, Ke Liao3,4, Wei Wang3, Junmei Xu2* and Lingzhong Meng1*

Abstract

Background: Intraoperative physiological monitoring generates a large quantity of time-series data that might be
associated with postoperative outcomes. Using a deep learning model based on intraoperative time-series
monitoring data to predict postoperative quality of recovery has not been previously reported.

Methods: Perioperative data from female patients having laparoscopic hysterectomy were prospectively collected.
Deep learning, logistic regression, support vector machine, and random forest models were trained using different
datasets and evaluated by 5-fold cross-validation. The quality of recovery on postoperative day 1 was assessed
using the Quality of Recovery-15 scale. The quality of recovery was dichotomized into satisfactory if the score ≥122
and unsatisfactory if <122. Models’ discrimination was estimated using the area under the receiver operating
characteristics curve (AUROC). Models’ calibration was visualized using the calibration plot and appraised by the
Brier score. The SHapley Additive exPlanation (SHAP) approach was used to characterize different input features’
contributions.

Results: Data from 699 patients were used for modeling. When using preoperative data only, all four models
exhibited poor performance (AUROC ranging from 0.65 to 0.68). The inclusion of the intraoperative intervention
and/or monitoring data improved the performance of the deep leaning, logistic regression, and random forest
models but not the support vector machine model. The AUROC of the deep learning model based on the
intraoperative monitoring data only was 0.77 (95% CI, 0.72–0.81), which was indistinct from that based on the
intraoperative intervention data only (AUROC, 0.79; 95% CI, 0.75–0.82) and from that based on the preoperative,
intraoperative intervention, and monitoring data combined (AUROC, 0.81; 95% CI, 0.78–0.83). In contrast, when
using the intraoperative monitoring data only, the logistic regression model had an AUROC of 0.72 (95% CI, 0.68–
0.77), and the random forest model had an AUROC of 0.74 (95% CI, 0.73–0.76). The Brier score of the deep learning
model based on the intraoperative monitoring data was 0.177, which was lower than that of other models.
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Conclusions: Deep learning based on intraoperative time-series monitoring data can predict post-hysterectomy
quality of recovery. The use of intraoperative monitoring data for outcome prediction warrants further investigation.

Trial registration: This trial (Identifier: NCT03641625) was registered at ClinicalTrials.gov by the principal
investigator, Lingzhong Meng, on August 22, 2018.

Keywords: Deep learning, Machine learning, Time-series monitoring data, Hysterectomy, Quality of recovery,
Prediction

Background
Perioperative care has two fundamental goals. One is to
reduce the incidence of complications, and the other is
to enhance recovery to the greatest extent possible.
Complications and quality of recovery are related but
distinct phenomena (Jammer et al., 2015). Complications
negatively impact recovery, while the quality of recovery
can still vary among patients who, clinically, do not have
any or have comparable complications (Bowyer, Jakobs-
son, Ljungqvist, & Royse, 2014). The question is how to
accomplish these goals. One solution is prognostication,
i.e., if we are informed of the level of the risk for a given
complication or the potential for an unsatisfactory re-
covery, we can adjust patient care based on the best evi-
dence to minimize undesirable outcomes (Coulter,
Locock, Ziebland, & Calabrese, 2014). Therefore, these
at-risk patients should receive enhanced care.
To guide intraoperative care, prognostication must

happen before surgery or during surgery. Any prognosti-
cation based only on preoperative information misses in-
traoperative information, which could adversely affect
prognostication as the quality of intraoperative care is
one of the major determinants of postoperative out-
comes (Ljungqvist, Scott, & Fearon, 2017). It is theoret-
ically ideal to incorporate intraoperative information
during the prognostication of postoperative courses. To
do so, practitioners must collect intraoperative informa-
tion in real time, feed the data into validated models in-
stantaneously, and use the output to guide
intraoperative care in a timely manner (Mathis, Kheter-
pal, & Najarian, 2018).
Intraoperative data can be categorized into two types:

one is time-series monitoring data, such as heart rate
and blood pressure, and the other is intervention data,
such as medications and fluids given to patients. The
time-series monitoring data carry temporal and dynamic
information, a unique feature distinguishing themselves
from non-time-series intervention data. However, there
may be an association between intervention and time-
series monitoring data because intraoperative interven-
tions may make a footprint in monitoring, for example,
the administration of phenylephrine (i.e., an interven-
tion) increases blood pressure and decreases heart rate
(i.e., corresponding change in monitoring). We speculate

that this footprint may sometimes make the simultan-
eous use of intervention and monitoring data in a pre-
diction model redundant. Currently, determining how
best to use the intraoperative time-series monitoring
data during prognostication remains largely unknown.
During conventional modeling (e.g., logistic regres-

sion), processed parameters of the time-series monitor-
ing data, such as the maximum, minimum, mean, and
median values, are used in modeling. The concern re-
garding this approach is the loss of temporal and dy-
namic information embedded in the time-series data.
Deep learning models can uniquely learn from the ori-
ginal time-series data, which may be superior to models
that can only learn from processed parameters (Fawaz,
Forestier, Weber, Idoumghar, & Muller, 2019a).
In this study, we hypothesized that the InceptionTime

deep learning model based on the intraoperative time-
series monitoring data can predict the quality of recov-
ery after surgery. We based this study on data collected
from the intervention guided by Muscular Oxygenation
to Decrease the Incidence of PostOperative Nausea and
Vomiting (iMODIPONV) trial. As a result, the data were
derived from female patients having laparoscopic
hysterectomy.

Methods
This study was based on data collected in the iMODI-
PONV trial conducted in female patients having laparo-
scopic hysterectomy (ClinicalTrials.gov Registration:
NCT03641625) (Li et al., 2020). This study was con-
ducted according to the Guidelines for Developing and
Reporting Machine Learning Predictive Models in Bio-
medical Research (Luo et al., 2016).

Patients
Participants were 18–65-year-old females who had no
history of smoking and were scheduled for elective
laparoscopic hysterectomy. Their American Society of
Anesthesiologists (ASA) physical status classifications
were I–II. Patients who were scheduled for vaginal or
open hysterectomy, urgent or emergent surgery, or a
procedure involving bowel resection were excluded.
Patients with major systemic comorbidities or who
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had undergone chemotherapy or radiotherapy within
3 months before surgery were also excluded.

Data
The modeling used preoperative, intraoperative inter-
vention, and intraoperative monitoring data (Table 1).
Preoperative data included patient demographics, ASA
classification, anesthesia-relevant history, comorbidities,
and laboratory results. Intraoperative intervention data
included anesthetic time, medications, inputs, and out-
puts. The total of these variables for the entire surgery
was used in modeling. Intraoperative monitoring data
included time-series heart rate, blood pressure, respira-
tory rate, pulse oxygen saturation, end-tidal carbon diox-
ide, and body temperature. We additionally included
muscular tissue oxygen saturation data as it was moni-
tored in the iMODIPONV trial. All intraoperative moni-
toring data were recorded every 2 seconds by a research
laptop. The recording started approximately 5 min be-
fore anesthesia induction and stopped at the end of
surgery.
For time-series data, we regarded values that fell out-

side the 0.5th and 99.5th percentiles as outliers and
treated them as missing data. The missing time-series
data were filled using values corresponding to the imme-
diately preceding time points. Time-series data varied
with respect to recording duration due to variations in
surgical time across patients. We scaled all time-series

data to the same extent of 1000 time points using standard
down-sampling or up-sampling methods (spline
interpolation). We chose 1000 time points because our pre-
liminary analyses indicated that models using 1000 time
points had non-inferior performance and could be trained
faster than otherwise (eTable 1 in Additional file 1).
In the deep learning model, we converted non-time-

series data in the form of a single value per feature per
patient to time-series data by replicating the value across
all time points. In all models, categorical data were con-
verted into binary data using the one-hot encoding
method (Potdar, Pardawala, & Pai, 2017). Missing nu-
merical data were filled using mean imputations. All
continuous data, including time-series monitoring data,
were normalized to a range from 0 to 1. The upper and
lower limits used in normalization are presented in
eTable 2 in Additional file 1.

Outcome definition
In this study, we targeted the quality of recovery as an
outcome measure, which was assessed using the Quality
of Recovery-15 (QoR-15) scale on postoperative day 1
(Stark, Myles, & Burke, 2013). The QoR-15 scale, ran-
ging from 0 to 150, is a validated patient-reported meas-
ure of the quality of recovery (Myles et al., 2018). We
dichotomized the quality of recovery into satisfactory if
the QoR-15 score ≥122 and unsatisfactory if <122. This
cutoff value was consistent with a previous study that

Table 1 Type and nature of the data used in modeling

Type of data Nature of data

Preoperative data

Demographics (Age, height, body weight, and BMI) Numerical data

ASA physical status classification Categorical data

Anesthesia-relevant history (general anesthesia, spinal anesthesia, nerve block or local anesthesia,
postoperative nausea and vomiting, and motor sickness)

Categorical data

Comorbidities (psychiatric disease, neurologic disease, hypertension, cardiovascular disease, pulmonary
disease, endocrinologic disease, renal insufficiency, and digestive disease)

Categorical data

Laboratory results (hemoglobin, hematocrit, and creatinine) Numerical data

Intraoperative intervention dataa

Anesthetic time Numerical data

Propofol, remifentanil, and sufentanilb Numerical data

Crystalloid, urine output, and blood loss Numerical data

Intraoperative monitoring data

Respiratory rate and end-tidal carbon dioxide Time-series data, captured from
anesthesia machine

Heart rate, systolic blood pressure, diastolic blood pressure, mean arterial pressure, pulse oxygen
saturation and body temperature

Time-series data, captured from vital sign
monitors

Muscular tissue oxygen saturation Time-series data, captured from NIRS-
based tissue oximeter

BMI body mass index, ASA American Society of Anesthesiologists, NIRS near-infrared spectroscopy, iMODIPONV trial the intervention guided by Muscular
Oxygenation to Decrease the Incidence of PostOperative Nausea and Vomiting (iMODIPONV) trial
aFor the intraoperative intervention data, the totals of different variables for the entire surgery were used in modeling
bSufentanil was the standardized opioid for pain control in the iMODIPONV trial
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categorized the quality of recovery as excellent or good
if the QoR-15 score ≥122, and moderate or poor if the
QoR-15 score <122 (Kleif & Gögenur, 2018). We also
referenced the mean and median QoR-15 values of our
patient population during the determination of the cut-
off value.

Model development
Stratified, 5-fold cross-validation was used to develop
training and testing sets (Fig. 1).

Deep learning model
The architecture of the deep learning model is presented
in Fig. 2. The model was based on InceptionTime
(Fawaz et al., 2019a, b), which ensembled six sequentially
stacked deep convolutional neural network modules (In-
ception module). In each inception module, the multi-
dimension time-series data were transformed into one-
dimension data (bottleneck). This process reduced the
dimensionality of the time-series data and potentially
avoided overfitting small datasets. Three one-dimension
filters with lengths of 10, 20, and 40 were applied simul-
taneously to the output of bottleneck (convolution). A
parallel operation was performed to avoid the influence

of small perturbations. A window with a length of 3 was
slid onto the original multi-dimension time-series data,
and the maximum value in this window was computed
(MaxPooling). The outputs of each independent parallel
convolution and MaxPooling were concatenated to form
the output of the current Inception module. The Incep-
tion network classifier contained two different residual
blocks to mitigate the vanishing gradient. Each residual
block was comprised of three Inception modules. Ten
percent of patients in the training set were reserved and
used as a validation set during the training of the deep
learning model. The binary cross-entropy loss with sig-
moid layer was used as a loss function. To avoid model
overfitting, the training process was stopped when the
validation loss began to increase.

Other models
We compared the deep learning model to three widely
used machine learning algorithms, including logistic re-
gression, support vector machine, and random forest.
Because these algorithms cannot handle the original
time-series data, the maximum, minimum, mean, and
standard deviation (SD) values of each time-series data
were used in modeling. Default parameters of the scikit-

Fig. 1 Model development and evaluation. iMODIPONV trial, intervention guided by Muscular Oxygenation to Decrease the Incidence of
PostOperative Nausea and Vomiting; ASA American Society of Anesthesiologists

Zhao et al. Perioperative Medicine            (2021) 10:8 Page 4 of 12



learn (version 0.22.2.post1) were used in the training
process of these algorithms.

Model performance
Accuracy, sensitivity, specificity, F1 score, and area
under the receiver operating characteristics curve
(AUROC) were used to estimate model discrimination
(Alba et al., 2017). Calibration (goodness of fit) was visu-
alized using the calibration plot (Alba et al., 2017). Cali-
bration reflects the extent to which the expected
(predicted from the model) and observed outcomes
agree. The calibration plot was graphically depicted
using the observed outcome frequencies on the ordinate
plotted against the expected outcome probabilities on
the abscissa. The better the model was calibrated, the
closer the points approximated the perfectly calibrated
diagonal traveling from the bottom left to the top right
in the graph. The overall agreement between the pre-
dicted and observed outcomes was quantified using the
Brier score (Rufibach, 2010). The Brier score ranges
from 0 to 1 and is the mean squared difference between
the predicted and observed outcomes. A lower Brier
score indicates improved model accuracy.

Feature importance
For the deep learning model, class activation mapping
was used to visualize the contributions of different parts
of time-series data to the prediction (Zhou, Khosla,
Lapedriza, Oliva, & Torralba, 2016). Class activation
mapping provides visual explanation for convolutional
neural networks by highlighting the significance of con-
tribution based on local backpropagation. In this study,
we used class activation mapping to explore whether any
parts of the input appeared peculiar that might confuse
the network.

For the logistic regression, support vector machine,
and random forest models, the SHapley Additive exPlan-
ation (SHAP) approach was used to appraise the signifi-
cance of the contribution made by different input
features to the prediction (Lundberg & Lee, 2017). The
SHAP method is based on the game theory approach
that assigns each feature a SHAP value. A larger absolute
SHAP value represents a bigger contribution made by
the feature to the prediction. We used the fold that had
the best prediction performance to evaluate feature
importance.

Software
Model development and evaluation were performed
using Python 3.6.9. The deep neural network models
were developed using the PyTorch (version 1.0.1), time-
series (version 0.0.6), and fastai2 (version 0.0.19) mod-
ules. The logistic regression, support vector machine,
and random forest models were developed using the
scikit-learn module (version 0.22.2.post1). Performance
metrics were calculated using the scikit-learn module
(version 0.22.2.post1).

Results
Patient characteristics
The iMODIPONV trial enrolled 800 patients. Of these
800 patients, we excluded 101 patients including 94 pa-
tients due to missing monitoring or outcome data and 7
patients due to an ASA classification ≥III (Fig. 1). A total
of 699 patients (age, 50±7 years; body mass index, 25±3
kg/m2) were included in this study (Table 2). The mean
and median QoR-15 scores of our patients were 121 (19,
SD) and 122 (109–135, IQR), respectively, and 50.6%
(354/699) of our patients had a QoR-15 score ≥122. The
distribution of the QoR-15 score is presented in Fig. 3.

Fig. 2 Architecture of the deep learning model. Conv1d one-dimensional convolution, FC fully connected
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Table 2 Perioperative data (n = 699)

Preoperative data

Mean age ± SD, year 50 ± 7

Mean body mass index ± SD, kg/m2 25 ± 3

ASA physical status, no. (%)

I 229 (32.8)

II 470 (67.2)

Coexisting medical condition, no. (%)

Psychiatric disease 3 (0.4)

Neurological disease 15 (2.1)

Hypertension 142 (20.3)

Cardiovascular disease 26 (3.7)

Pulmonary disease 8 (1.1)

Endocrinological disease 69 (9.9)

Renal insufficiency 2 (0.3)

Digestive disease 22 (3.1)

History of anesthesia, no. (%)

Never 286 (40.9)

General anesthesia 197 (28.2)

Spinal anesthesia 182 (26.0)

Nerve block 2 (0.3)

Local anesthesia 57 (8.2)

History of PONV, no. (%)

Never had surgery 279 (39.9)

Surgery without PONV 377 (53.9)

Surgery with PONV 43 (6.2)

History of motion sickness, no. (%) 154 (22.0)

Mean hemoglobin ± SD, g/l 123 ± 18

Mean hematocrit ± SD, % 37 ± 5

Mean creatinine ± SD, μmol/l 59 ± 13

Intraoperative intervention data, mean ± SD

Duration of anesthesia, min 175 ± 74

Propofol, mg 958 ± 437

Remifentanil, mg 1.2 ± 0.7

Sufentanil, mcg 32 ± 15

Crystalloid, ml 1512 ± 575

Estimated blood loss, ml 69 ± 93

Urine output, ml 369 ± 261

Intraoperative monitoring data, mean ± SDa

Mean respiratory rate, breath per min 14 ± 2

Mean end-tidal carbon dioxide, mmHg 34 ± 4

Mean heart rate, beat per min 66 ± 9

Mean systolic blood pressure, mmHg 117 ± 12

Mean diastolic blood pressure, mmHg 73 ± 8

Mean MAP, mmHg 86 ± 9
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Model discrimination
Models’ performance is presented in Table 3. When using
the preoperative data only, all four models exhibited poor
performance, with AUROCs ranging from 0.65 to 0.68.
The inclusion of the intraoperative intervention and/or
monitoring data improved the performance of the deep
leaning, logistic regression, and random forest models, but
not the support vector machine model, which had an
AUROC that remained in the range of 0.65–0.71.
In this study, performance was defined as indistinct if

the AUROC’s 95% confidence interval (CI) overlaps. The
deep learning model had indistinct performance when
using the intraoperative intervention data only (AUROC,
0.79; 95% CI, 0.75–0.82), using the intraoperative moni-
toring data only (AUROC, 0.77; 95% CI, 0.72–0.81), and
using the preoperative, intraoperative intervention, and
monitoring data combined (AUROC, 0.81; 95% CI,
0.78–0.83).
The logistic regression model had indistinct perform-

ance when using the intraoperative intervention data

only (AUROC, 0.78; 95% CI, 0.74–0.82), using the intra-
operative monitoring data only (AUROC, 0.72; 95% CI,
0.68–0.77), and using the preoperative, intraoperative
intervention, and monitoring data combined (AUROC,
0.77; 95% CI, 0.70–0.85).
The random forest model had indistinct performance

when using the intraoperative intervention data only
(AUROC, 0.81; 95% CI, 0.76–0.85) and using the pre-
operative, intraoperative intervention and monitoring
data combined (AUROC, 0.82; 95% CI, 0.78–0.87). In
contrast, the performance was inferior when using the
intraoperative monitoring data only (AUROC, 0.74; 95%
CI, 0.73–0.76).

Model calibration
The calibration plots and Brier scores are shown in Fig. 4.
Compared to the logistic regression, support vector ma-
chine, and random forest models, the deep learning model
exhibited better calibration when using the intraoperative
monitoring data only (Brier score=0.177, Fig. 4a) and

Table 2 Perioperative data (n = 699) (Continued)

Mean pulse oxygen saturation, % 100 ± 1

Mean body temperature, °C 36 ± 1

Mean muscular tissue oxygen saturation, % 83 ± 7

Postoperative QoR

QoR-15 score, mean ± SD 121 ± 19

QoR-15 score, median [IQR] 122 [109-135]

Number of patients with a QoR-15 ≥122, no. (%) 354 (50.6)

SD standard deviation, ASA American Society of Anesthesiologists, PONV postoperative nausea and vomiting, MAP mean arterial pressure, QoR quality of recovery,
IQR interquartile range
aFor time-series data, we first removed those outliers defined as the data outside of the 0.5th–99.5th percentile. The mean of all data within the 0.5th–99.5th
percentile was first derived for each patient. These means were then averaged to derive the mean for all patients

Fig. 3 QoR-15 distribution. QoR quality of recovery
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Table 3 Models’ performance based on different datasets

Accuracya Sensitivitya Specificitya F1 scorea AUROC

Preoperative data

Deep learning 0.61 (0.57–0.65) 0.61 (0.54–0.68) 0.61 (0.50–0.71) 0.60 (0.56–0.64) 0.65 (0.62–0.67)

Logistic regression 0.63 (0.59–0.66) 0.62 (0.59–0.65) 0.63 (0.56–0.71) 0.62 (0.60–0.65) 0.68 (0.66–0.70)

Support vector machine 0.61 (0.56–0.66) 0.51 (0.40–0.62) 0.70 (0.59–0.81) 0.56 (0.49–0.63) 0.65 (0.60–0.70)

Random forest 0.62 (0.60–0.65) 0.59 (0.49–0.70) 0.66 (0.59–0.72) 0.60 (0.55–0.66) 0.68 (0.65–0.70)

Intraoperative intervention data

Deep learning 0.74 (0.70–0.79) 0.73 (0.66–0.80) 0.74 (0.61–0.87) 0.74 (0.71–0.77) 0.79 (0.75–0.82)

Logistic regression 0.76 (0.71–0.81) 0.77 (0.73–0.80) 0.76 (0.64–0.88) 0.76 (0.73–0.79) 0.78 (0.74–0.82)

Support vector machine 0.59 (0.54–0.64) 0.50 (0.41–0.59) 0.67 (0.55–0.80) 0.54 (0.48–0.60) 0.65 (0.61–0.68)

Random forest 0.73 (0.67–0.79) 0.75 (0.71–0.78) 0.72 (0.58–0.86) 0.74 (0.69–0.78) 0.81 (0.76–0.85)

Intraoperative monitoring data

Deep learningb 0.70 (0.69–0.72) 0.64 (0.58–0.69) 0.77 (0.70–0.84) 0.68 (0.66–0.71) 0.77 (0.72–0.81)

Logistic regressionc 0.69 (0.63–0.75) 0.68 (0.64–0.72) 0.69 (0.56–0.83) 0.68 (0.64–0.73) 0.72 (0.68–0.77)

Support vector machinec 0.62 (0.58–0.66) 0.61 (0.56–0.66) 0.63 (0.52–0.75) 0.62 (0.59–0.64) 0.68 (0.65–0.71)

Random forestc 0.61 (0.57–0.65) 0.83 (0.72–0.94) 0.40 (0.21–0.58) 0.68 (0.66–0.69) 0.74 (0.73–0.76)

Intraoperative monitoring data + SmtO2

Deep learningb 0.71 (0.69–0.73) 0.64 (0.57–0.72) 0.77 (0.68–0.87) 0.69 (0.67–0.70) 0.77 (0.74–0.79)

Logistic regressionc 0.69 (0.63–0.75) 0.68 (0.64–0.72) 0.69 (0.54–0.85) 0.69 (0.65–0.72) 0.73 (0.68–0.78)

Support vector machinec 0.67 (0.64–0.70) 0.63 (0.57–0.69) 0.70 (0.61–0.79) 0.65 (0.63–0.68) 0.71 (0.67–0.76)

Random forestc 0.65 (0.60–0.70) 0.87 (0.79–0.95) 0.44 (0.27–0.61) 0.71 (0.70–0.73) 0.78 (0.73–0.82)

Preoperative data + intraoperative monitoring data + intraoperative intervention data

Deep learning 0.73 (0.70–0.76) 0.74 (0.69–0.80) 0.71 (0.62–0.80) 0.73 (0.71–0.75) 0.81 (0.78–0.83)

Logistic regression 0.73 (0.66–0.80) 0.75 (0.70–0.80) 0.72 (0.58–0.85) 0.74 (0.68–0.79) 0.77 (0.70–0.85)

Support vector machine 0.59 (0.56–0.61) 0.50 (0.40–0.60) 0.67 (0.56–0.78) 0.54 (0.49–0.59) 0.65 (0.61–0.69)

Random forest 0.76 (0.72–0.80) 0.82 (0.75-0.88) 0.70 (0.57–0.83) 0.77 (0.74–0.80) 0.82 (0.78–0.87)

Data are presented as mean (95% confidence interval)
AUROC area under the receiver operating characteristic curve, SmtO2 muscular tissue oxygen saturation
aCalculated based on the decision threshold of 0.5
bBased on time-series data
cBased on the maximum, minimum, mean, and standard deviation values of time-series data

Fig. 4 Calibration plots and Brier scores of different models. Models based on intraoperative monitoring data (a) and based on preoperative data,
intraoperative monitoring data, and intraoperative intervention data (b) are presented
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when using the preoperative, intraoperative intervention,
and monitoring data combined (Brier score=0.156, Fig. 4b).

Feature importance
SHAP values for the logistic regression and random for-
est models are presented in Fig. 5. We did not present
SHAP values for the deep leaning and support vector
machine models due to the unsuitability of using the
SHAP method to explain the InceptionTime deep learn-
ing model and the poor performance of the support vec-
tor machine model in our study. Among features
utilized in modeling, the dose of sufentanil administered
during surgery appeared to have the most significant
contribution to the prediction of the post-hysterectomy
quality of recovery (Fig. 5b, d). A higher dose of sufenta-
nil was associated with a higher likelihood of having an
unsatisfactory quality of recovery (Fig. 5a, c).

Class activation mapping
Examples of class activation mapping are presented in
eFigure 1 in Additional file 1. Overall, no specific parts
of the temporal input appeared to have peculiar
contributions.

Discussion
Summary of findings
We performed the first study investigating the prognos-
tication of the quality of recovery using a deep learning
model based on intraoperative time-series monitoring
data in surgical patients. Our study has some unique
findings. First, we found that the deep learning model
based only on the intraoperative time-series monitoring
data was able to predict the quality of recovery after lap-
aroscopic hysterectomy. When using intraoperative
monitoring data only, the performance of the deep
learning model was better than the logistic regression
and random forest models. This finding attests to the
potential value of using the intraoperative time-series
monitoring data for outcome prediction. Second, we
found that inclusion of the intraoperative intervention
and/or monitoring data significantly improved the per-
formance of the deep learning, logistic regression, and
random forest models compared to inclusion of the pre-
operative data only. This finding suggests that the per-
formance of these models is input data-dependent. It
also substantiates the close relationship between intraop-
erative management and postoperative outcomes. Third,
we found that use of the preoperative, intraoperative
intervention, and monitoring data combined did not sig-
nificantly improve the models’ performance compared to
the use of intraoperative intervention data only or the
use of the intraoperative monitoring data only. This
finding suggests certain inherent associations among dif-
ferent datasets.

Comparison with the current literature
Machine learning recently began to make its footprint in
the field of perioperative medicine (Hashimoto, Wit-
kowski, Gao, Meireles, & Rosman, 2020). Models based
on deep learning algorithms have been developed for
postoperative mortality prediction. Lee et al. developed a
deep neural network model based on data from 59,985
patients to predict postoperative in-hospital mortality
(Lee, Hofer, Gabel, Baldi, & Cannesson, 2018). The
AUROC of Lee et al.’s model was 0.88 (Lee et al., 2018).
Fritz et al. developed a multipath convolutional neural
network model based on data from 95,907 patients to
predict 30-day postoperative mortality with an AUROC
of 0.87 (Fritz et al., 2019).
Our study distinguished itself from these previous

studies in the following aspects: (1) we targeted the qual-
ity of recovery in a relatively homogenous, young, and
healthy female surgical patient population, while previ-
ous work targeted mortality in heterogeneous patient
populations; (2) we investigated the models’ performance
based on different types of input data, while previous
work did not; (3) our models were based on prospect-
ively collected data, while previous work was based on
retrospective data; (4) we used InceptionTime (Fawaz
et al., 2019a, b), a state-of-the-art deep learning model,
in our study, while previous work used different algo-
rithms; and (5) we used high-frequency time-series mon-
itoring data collected throughout the entire surgery,
while Lee et al. did not use time-series data, and Fritz
et al. used only time-series data collected over a random
60-min interval.

Limitations
Our study has limitations. First, our study was per-
formed in relatively young and healthy female patients;
therefore, caution is needed when generalizing our
models to other patient populations (Moons et al.,
2019). Second, the models’ performances in our study
were lower than that in Lee et al.’s study (Lee et al.,
2018) and Fritz et al.’s study (Fritz et al., 2019); among
the different potential causes for this inferiority, the
most likely cause is the small sample size of our study.
The model’s accuracy becomes less when the sample
size becomes smaller (Wisz et al., 2008). Third, it may
seem arbitrary when we used a cutoff QoR-15 value of
122 to dichotomize the quality of recovery. However,
this value was also adopted by a previous study (Kleif &
Gögenur, 2018) and is consistent with the mean and me-
dian QoR-15 scores of our patients (Li et al., 2020).
Fourth, our models did not use some intraoperative data,
e.g., the type and dose of vasoactive drugs. However, the
vasoactive drugs may exert their characteristic footprints
in time-series monitoring data. Thus, the use of time-
series monitoring data might have made up for the
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Fig. 5 SHAP summary plot and feature ranking. SHAP values for the twenty most important features used in the logistic regression model (a, b)
and random forest model (c, d) are shown. In plots a and c, each point represents a specific feature’s SHAP value in an individual patient. In plots
b and d, a specific feature’s absolute SHAP values for all patients were averaged. The larger a feature’s absolute SHAP value, the larger the impact
of the feature on patient’s outcome. A positive and negative SHAP value corresponds to a higher and lower likelihood of having an unsatisfactory
outcome, respectively. The mean absolute SHAP value of all patients reflects the significance of the feature in driving model’s prediction, i.e., the
higher the mean, the more significant the feature for prediction and vice versa. In plots a and c, the actual value of the feature for each patient is
color-coded, with red color representing higher values and blue color representing lower values. Of note, a specific feature’s SHAP value and
actual value are different. SHAP SHapley Additive exPlanation, RR respiratory rate, DBP diastolic blood pressure, EtCO2 end-tidal carbon dioxide,
SBP systolic blood pressure, MAP mean arterial pressure, SD standard deviation
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omission of certain intervention information in model-
ing. Fifth, we did not time stamp the intraoperative
intervention data; instead, we used the total at the end
of surgery in modeling. This approach might have ig-
nored certain information that is valuable for modeling.

Conclusions
Deep learning based on the intraoperative time-series
monitoring data can predict the quality of recovery after
laparoscopic hysterectomy. The performance of the deep
learning, logistic regression, and random forest models
is input data-dependent. The inclusion of the intraopera-
tive intervention and/or monitoring data significantly
improved the models’ performance compared to the in-
clusion of preoperative data only. These models may
help clinicians identify at-risk patients, adjust periopera-
tive care, and continuously improve the quality of clin-
ical care. Our study should be regarded as a preliminary
step towards accomplishing machine learning prediction
based on intraoperative time-series monitoring data due
to the various limitations discussed above. Moving for-
ward, our models need to be validated using large-scale
datasets with different patient populations.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s13741-021-00178-4.

Additional file 1: eTable 1. Performance of the deep learning model
based on intraoperative monitoring data per different scaling methods.
eTable 2. The maximum and minimum values used for continuous
variable scaling. eFigure 1. Class activation mapping in one patient. The
degree of the contribution to prognostication is color coded, with red
corresponding to a higher contribution and blue to a lower contribution.
A. Deep learning model based on intraoperative monitoring data. B.
Deep learning model based on preoperative data + intraoperative
intervention data + intraoperative monitoring data

Acknowledgements
Support was provided by institutional and/or departmental sources

Compliance with ethical standards
Not applicable.

Informed consent
Not applicable.

Authors’ contributions
Study conception/design: XZ, KL, and LM. Data analysis and model
construction: XZ and KL. Interpreting results: XZ, KL, and LM. Initial drafting of
manuscript: XZ and LM. Critical revision of manuscript: XZ, KL, WW, JX, and
LM. Supervision: LM. The authors read and approved the final version of the
manuscript.

Funding
No funding was received to conduct this study.

Availability of data and materials
Please contact Lingzhong Meng (lingzhong.meng@yale.edu).

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
Ke Liao and Wei Wang are Ricoh Software Research Center (Beijing) Co., Ltd.
(Beijing, China) employees, but this work was performed independently from
this position. The other authors declare no competing interests.

Author details
1Department of Anesthesiology, Yale University School of Medicine, 333
Cedar St, New Haven, CT 06520, USA. 2Department of Anesthesiology, The
Second Xiangya Hospital, Central South University, Changsha, Hunan
Province, China. 3Ricoh Software Research Center (Beijing) Co., Ltd., Beijing,
China. 4School of Information Science, Japan Advanced Institute of Science
and Technology, Nomi, Ishikawa, Japan.

Received: 16 November 2020 Accepted: 22 February 2021

References
Alba AC, Agoritsas T, Walsh M, Hanna S, Iorio A, Devereaux P, et al. Discrimination

and calibration of clinical prediction models: users’ guides to the medical
literature. JAMA. 2017;318(14):1377–84.

Bowyer A, Jakobsson J, Ljungqvist O, Royse C. A review of the scope and
measurement of postoperative quality of recovery. Anaesthesia. 2014;69(11):
1266–78.

Coulter A, Locock L, Ziebland S, Calabrese J. Collecting data on patient
experience is not enough: they must be used to improve care. BMJ. 2014;
348:g2225.

Fawaz HI, Forestier G, Weber J, Idoumghar L, Muller P-A. Deep learning for time
series classification: a review. Data Mining Knowl Discov. 2019a;33(4):917–63.

Fawaz HI, Lucas B, Forestier G, Pelletier C, Schmidt DF, Weber J, et al.
Inceptiontime: finding alexnet for time series classification. arXiv Preprint.
2019b;1909:04939.

Fritz BA, Cui Z, Zhang M, He Y, Chen Y, Kronzer A, et al. Deep-learning model for
predicting 30-day postoperative mortality. Brit J Anaesthesia. 2019;123(5):
688–95.

Hashimoto DA, Witkowski E, Gao L, Meireles O, Rosman G. Artificial intelligence in
anesthesiologycurrent techniques, clinical applications, and limitations.
Anesthesiology. 2020;132(2):379–94.

Jammer I, Wickboldt N, Sander M, Smith A, Schultz MJ, Pelosi P, et al. Standards
for definitions and use of outcome measures for clinical effectiveness
research in perioperative medicine: European Perioperative Clinical Outcome
(EPCO) definitionsA statement from the ESA-ESICM joint taskforce on
perioperative outcome measures. Eur J Anaesthesiol. 2015;32(2):88–105.

Kleif J, Gögenur I. Severity classification of the quality of recovery-15 score—an
observational study. J Surg Res. 2018;225:101–7.

Lee CK, Hofer I, Gabel E, Baldi P, Cannesson M. Development and validation of a
deep neural network model for prediction of postoperative in-hospital
mortality. Anesthesiology. 2018;129(4):649–62.

Li G, Tian D-D, Wang X, Feng X, Zhang W, Bao J, et al. Muscular tissue oxygen
saturation and posthysterectomy nausea and vomiting the iMODIPONV
randomized controlled trial. Anesthesiology. 2020;133(2):318–31.

Ljungqvist O, Scott M, Fearon KC. Enhanced recovery after surgery: a review.
JAMA Surg. 2017;152(3):292–8. https://doi.org/10.1001/jamasurg.2016.4952.

Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model
predictions. Paper presented at the Advances in neural information
processing systems.

Luo W, Phung D, Tran T, Gupta S, Rana S, Karmakar C, et al. Guidelines for
developing and reporting machine learning predictive models in biomedical
research: a multidisciplinary view. J Med Internet Res. 2016;18(12):e323.
https://doi.org/10.2196/jmir.5870.

Mathis MR, Kheterpal S, Najarian K. Artificial intelligence for anesthesia: what the
practicing clinician needs to knowmore than black magic for the art of the
dark. Anesthesiology. 2018;129(4):619–22.

Zhao et al. Perioperative Medicine            (2021) 10:8 Page 11 of 12

https://doi.org/10.1186/s13741-021-00178-4
https://doi.org/10.1186/s13741-021-00178-4
mailto:lingzhong.meng@yale.edu
https://doi.org/10.1001/jamasurg.2016.4952
https://doi.org/10.2196/jmir.5870


Moons KG, Wolff RF, Riley RD, Whiting PF, Westwood M, Collins GS, et al.
PROBAST: a tool to assess risk of bias and applicability of prediction model
studies: explanation and elaboration. Ann Intern Med. 2019;170(1):W1–W33.

Myles PS, Bellomo R, Corcoran T, Forbes A, Peyton P, Story D, et al. Restrictive
versus liberal fluid therapy for major abdominal surgery. New Engl J Med.
2018;378(24):2263–74.

Potdar K, Pardawala TS, Pai CD. A comparative study of categorical variable
encoding techniques for neural network classifiers. Int J Comp Appl. 2017;
175(4):7–9.

Rufibach K. Use of Brier score to assess binary predictions. J Clin Epidemiol. 2010;
63(8):938–9.

Stark PA, Myles PS, Burke JA. Development and psychometric evaluation of a
postoperative quality of recovery score the QoR-15. J Am Soc Anesthesiol.
2013;118(6):1332–40.

Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A, NCEAS Predicting
Species Distributions Working Group. Effects of sample size on the
performance of species distribution models. Divers Distribut. 2008;14(5):763–
73.

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., & Torralba, A. (2016). Learning deep
features for discriminative localization. Paper presented at the Proceedings of
the IEEE conference on computer vision and pattern recognition.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Zhao et al. Perioperative Medicine            (2021) 10:8 Page 12 of 12


	Abstract
	Background
	Methods
	Results
	Conclusions
	Trial registration

	Background
	Methods
	Patients
	Data
	Outcome definition
	Model development
	Deep learning model
	Other models
	Model performance
	Feature importance
	Software

	Results
	Patient characteristics
	Model discrimination
	Model calibration
	Feature importance
	Class activation mapping

	Discussion
	Summary of findings
	Comparison with the current literature
	Limitations

	Conclusions
	Supplementary Information
	Acknowledgements
	Compliance with ethical standards
	Informed consent
	Authors’ contributions
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

