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Abstract 

Background Remote ischaemic preconditioning (RIPC) has been investigated as a simple intervention to potentially 
mitigate the ischaemic effect of the surgical insult and reduce postoperative morbidity. This review systematically 
evaluates the effect of RIPC on morbidity, including duration of hospital stay and parameters reflective of cardiac, 
renal, respiratory, and hepatic dysfunction following non‑cardiac non‑vascular (NCNV) surgery.

Methods The electronic databases PubMed, Embase, and the Cochrane Central Register of Controlled Trials (CEN‑
TRAL) were searched from their inception date to November 2021. Studies investigating the effect of local precondi‑
tioning or postconditioning were excluded. Methodological quality and risk of bias were determined according to the 
Revised Cochrane risk‑of‑bias tool for randomised trials (RoB 2). Calculation of the odds ratios and a random effects 
model was used for dichotomous outcomes and mean differences or standardised mean differences as appropriate 
were used for continuous outcomes. The primary outcomes of interest were cardiac and renal morbidity, and the 
secondary outcomes included other organ function parameters and hospital length of stay.

Results A systematic review of the published literature identified 36 randomised controlled trials. There was no 
significant difference in postoperative troponin or acute kidney injury. RIPC was associated with lower postopera‑
tive serum creatinine (9 studies, 914 patients, mean difference (MD) ‑ 3.81 µmol/L, 95% confidence interval (CI) ‑ 6.79 
to ‑ 0.83, p = 0.01, I2 = 5%) and lower renal stress biomarker (neutrophil gelatinase‑associated lipocalin (NGAL), 5 
studies, 379 patients, standardized mean difference (SMD) ‑ 0.66, 95% CI ‑ 1.27 to ‑ 0.06, p = 0.03, I2 = 86%). RIPC was 
also associated with improved oxygenation (higher  PaO2/FiO2, 5 studies, 420 patients, MD 51.51 mmHg, 95% CI 27.32 
to 75.69, p < 0.01, I2 = 89%), lower biomarker of oxidative stress (malondialdehyde (MDA), 3 studies, 100 patients, MD 
‑ 1.24 µmol/L, 95% CI ‑ 2.4 to ‑ 0.07, p = 0.04, I2 = 91%)) and shorter length of hospital stay (15 studies, 2110 patients, 
MD ‑ 0.99 days, 95% CI ‑ 1.75 to ‑ 0.23, p = 0.01, I2 = 88%).

Conclusions This meta‑analysis did not show an improvement in the primary outcomes of interest with the use 
of RIPC. RIPC was associated with a small improvement in certain surrogate parameters of organ function and small 
reduction in hospital length of stay. Our results should be interpreted with caution due to the limited number of stud‑
ies addressing individual outcomes and the considerable heterogeneity identified.
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Introduction
Postoperative morbidity, as defined by the National Sur-
gical Quality Improvement Programme (NSQIP), not 
only affects short-term outcomes resulting in a prolonged 
hospital stay and delayed adjunct treatment, but there is 
also evidence that it is associated with longer-term effects 
including survival and disease recurrence (Artinyan et al. 
2015; Aoyama et  al. 2015; Khuri et  al. 2005). Following 
the body cavity surgery, oxygen consumption increases 
from approximately 3.5 ml/kg/min in the resting state to 
5 ml/kg/min (Minto and Biccard 2014). If this increased 
oxygen demand cannot be met, the resultant supply/
demand imbalance may result in tissue ischaemia (Minto 
and Biccard 2014). Restoration of the blood flow to an 
ischaemic organ results in an inflammatory response that 
may augment tissue injury in excess of that produced by 
ischaemia alone. Ischaemic preconditioning describes a 
brief episode of ischaemia that initiates a response which 
protects organs from sustained ischaemic events and as 
such has the potential to attenuate the ischaemic and 
reperfusion impact of the surgical insult (Zarbock et  al. 
2020).

The mechanism underlying remote ischaemic precon-
ditioning (RIPC) is not completely understood, but likely 
involves both neuronal and humoral factors that result 
in vagally mediated cardioprotection and nitric oxide-
induced mitochondrial protection, respectively (Hausen-
loy et al. 2015; Sivaraman et al. 2015; Wu et al. 2018).

The technique of RIPC has been studied mostly in car-
diac and vascular surgery and a Cochrane systematic 
review concluded that, although RIPC did not improve 
mortality, myocardial infarction, or stroke, it decreased 
the release of troponin following cardiac surgery (Ben-
stoem et al. 2017). RIPC has been studied less extensively 
in non-cardiac non-vascular (NCNV) surgery, and there-
fore, we performed a systematic review and meta-anal-
ysis of the effect of RIPC on postoperative morbidity in 
this group of patients.

Methods
We performed a systematic review and meta-analysis in 
accordance with the Preferred Reporting Items for Sys-
tematic Reviews and Meta-analyses (PRISMA) statement 
criteria and the Cochrane collaboration recommenda-
tions. The protocol was registered with Prospero under 
the registration number CRD42019129503.

Search strategy
The electronic databases PubMed, Embase, and the 
Cochrane Central Register of Controlled Trials (CEN-
TRAL) were searched from their inception date to 
November 2021. The search terms used were ischemic 
condition* or ischemic precondition* or ischaemic con-
dition* or ischaemic precondition*(title). There were no 
language restrictions. Google search engine was also 
searched for additional publications.

Inclusion and exclusion criteria
The search results were limited to randomised controlled 
trials investigating the use of RIPC prior to NCNV sur-
gery. Studies investigating the effect of local precondi-
tioning (direct interruption of the arterial blood supply 
to the organ undergoing the surgical intervention) or 
postconditioning (interruption of the blood supply after 
the completion of the surgical procedure) were excluded. 
Studies where the RIPC was applied in one subject and 
the outcome of interest was investigated in a different 
subject (i.e., studies where the RIPC was applied to the 
organ donor and the outcomes were measured in the 
organ recipient) were also excluded.

Outcome parameters
The primary outcome of interest was postoperative car-
diac morbidity, as defined by the incidence of myocardial 
injury as well as postoperative troponin levels, and renal 
morbidity characterized by the incidence of acute kidney 
injury (AKI), postoperative creatinine and glomerular fil-
tration rate (GFR) values, and the renal stress biomarker 
neutrophil gelatinase-associated lipocalin (NGAL), a gly-
coprotein of the lipocalin superfamily that is produced 
by the kidney within hours of an ischaemic insult and its 
level correlates with the severity of AKI. The outcomes 
were chosen for better capture and overall assessment of 
the effects of RIPC on renal parameters.

The secondary outcomes of interest were chosen based 
on outcomes studied in the literature and included other 
metrics of organ dysfunction or morbidity, namely, res-
piratory, hepatic, markers of inflammation and oxida-
tive stress, and length of hospital stay. Specific indices 
investigated were the ratio of arterial oxygen partial pres-
sure to fractional-inspired oxygen  (PaO2/FiO2), arterial 
to alveolar partial pressure of oxygen  (PaO2/PAO2), and 
alveolar-arterial partial pressure of oxygen difference 
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 (PAO2-PaO2). Liver function tests included alanine ami-
notransferase (ALT), aspartate aminotransferase (AST) 
and bilirubin, and markers of inflammation and oxida-
tive stress included interleukin 6, tumor necrosis factor 
a (TNF-a), and malondialdehyde (MDA). The adverse 
effects of remote ischaemic preconditioning were also 
investigated.

Study selection
The two authors (AP and MD) independently screened 
the titles and abstracts returned by the search against the 
inclusion criteria. Full-text articles were obtained for the 
abstracts that met the inclusion criteria and were exam-
ined by the same two authors who reached a decision 
about inclusion. The reason for the exclusion of any full-
text article was noted.

Data extraction
Data were extracted by one author (AP) and were cross-
checked by the other authors. We extracted information 
about the general characteristics of each study (author, 
date, type of study) the participants (characteristics of the 
population and type of surgery), the intervention (place 
of tourniquet placement, number of cycles, and dura-
tion of each inflation), and the outcomes. For dichoto-
mous outcomes, we extracted the number of events that 
occurred, and for continuous outcomes, the mean values 
and standard deviations. Where only a graph was avail-
able, data were extracted using the WebPlotDigitiser tool 
(WebPlotDigitizer - Copyright 2010-2020 Ankit Rohatgi 
2020). Where the result was reported as mean and con-
fidence intervals, the standard deviation was obtained 
by dividing the length of the confidence interval by 3.92 
and then multiplying by the square root of the sample 
size (7.7.3.2 Obtaining standard deviations from stand-
ard errors and. 2021) Where the result was reported as 
median [interquartile range], the median was used as the 
mean and the standard deviation was obtained by divid-
ing the interquartile range by 1.35 (7.7.3.5 Medians and 
interquartile ranges 2021).

Assessment of methodological quality
Methodological quality and risk of bias were determined 
according to the Revised Cochrane risk-of-bias tool for 
randomised trials (RoB 2).

Statistical analysis
A meta-analysis of the outcomes of interest was con-
ducted using R (version 4.0.1) (R: the R project for statis-
tical computing 2021). Calculation of the odds ratios and 
a random effects model was used for dichotomous out-
comes and mean differences or standardised mean differ-
ences as appropriate were used for continuous outcomes. 

The I2 statistic was used to measure heterogeneity and 
values greater than 50% were considered to indicate sig-
nificant heterogeneity. The GRADE approach was used to 
assess the quality of the evidence.

Results
Literature search and selection
The systematic literature search identified 2707 relevant 
publications. Of the 125 full-text articles assessed for eli-
gibility, 36 were suitable to be included in the systematic 
review (Supplemental Table 1). The study selection pro-
cess is shown in the PRISMA flow diagram (Fig. 1).

RIPC technique
RIPC was applied to the upper limb in 17 studies, and 
the lower limb in 18 studies and either the arm or calf 
in 1 study (Supplemental Table 1). Of the 17 studies that 
applied RIPC to the upper limb, 12 showed at least one 
positive outcome (71%), whereas 15 of the 18 studies that 
applied RIPC to the lower limb had at least one positive 
outcome (83%), p = 0.443. Of the 27 studies that reported 
at least one positive outcome, 8 included the use of intra-
venous (propofol) maintenance of anaesthesia, 12 used 
regional or volatile maintenance, and 7 did not specify.

Postoperative cardiac outcomes
A systematic review of the literature on the effect of 
RIPC on postoperative troponin following NCNV sur-
gery returned 4 studies that included elective abdominal, 
orthopedic, and emergency hip fracture surgery (Antono-
wicz et al. 2018; Ekeloef et al. 2019; Park et al. 2018; Zeg-
geren et al. 2021). Two of the studies recorded the level of 
troponin on the first postoperative day, one recorded the 
peak troponin within the first 48 h, and one the peak tro-
ponin within the first 4 postoperative days. Antonowicz 
et  al. and van Zeggeren et  al. measured high-sensitivity 
troponin-T (hs-TropT), Park et al. measured cardiac tro-
ponin I (cTropI) and Ekeloef et al. changed from cTropI 
to high-sensitivity troponin-I (hs-TropI) during the study. 
There was no statistically significant difference between 
the intervention and control groups (standardised mean 
difference (SMD) - 0.2, 95% confidence interval (CI) - 
0.48 to 0.09, I2 = 71%) (Fig. 2).

The incidence of postoperative myocardial injury was 
reported by 3 studies. However, the definition differed 
amongst the studies and, given the heterogeneous patient 
populations, the data were not pooled into a meta-anal-
ysis (Antonowicz et  al. 2018; Ekeloef et  al. 2019; Zeg-
geren et al. 2021). Antonowicz et al. recruited 84 patients 
undergoing elective abdominal surgery. Using a cutoff of 
peak hs-TropT in the first 72 h > 5 ng/L, the patients in 
the RIPC group had lower, though not statistically sig-
nificant, incidence of perioperative myocardial injury (68 
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vs 81%, p = 0.211). Ekeloef et  al. recruited 573 patients 
with a history of cardiovascular disease undergoing hip 
fracture surgery. The outcome changed from cTropI to 
hs-TropI during the study. The incidence of myocardial 
injury, defined as peak cTropI or hs-TropI of > 99th cen-
tile upper reference limit, was significantly lower in the 

RIPC group, 20 vs 31%, p = 0.002. Included in logistic 
regression analysis, RIPC was an independent variable 
associated with a lower risk of myocardial injury. Van 
Zeggeren et al. included 90 patients undergoing elective 
pancreatic surgery. Myocardial injury was defined as a 
rise in hs-TropT of at least 14 ng/L from the baseline and 

Fig. 1 PRISMA flow diagram

Fig. 2 Meta‑analysis comparing the effects of remote ischaemic preconditioning (RIPC) versus control on serum troponin in patients undergoing 
non‑cardiac non‑vascular surgery
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the incidence was 29 vs 40%, p = 0.375 in the interven-
tion vs control group.

Postoperative renal outcomes
The incidence of postoperative acute kidney injury 
(AKI) was reported in 5 studies that included the follow-
ing patient groups: patients undergoing nephrectomy, 
liver resection, orthopedic surgery, and liver transplant 
recipients (Park et al. 2018; Bang et al. 2019; Robertson 
et al. 2017; Teo et al. 2020; Chung et al. 2021). Three of 
the studies used the KDIGO criteria for the definition of 

AKI, one used the AKIN criteria and one used change in 
serum creatinine. The total number of participants was 
547, and the incidence of AKI was 13.5 vs 16.92% in the 
intervention and control groups, respectively, p = 0.81 
(Fig. 3A).

Values of postoperative serum creatinine were available 
from 9 studies. Random effects meta-analysis showed a 
lower postoperative serum creatinine in the interven-
tion group, mean difference (MD) - 3.81 µmol/L, 95% CI 
- 6.79 to - 0.83, p = 0.01, I2 = 5%) (Fig. 3B) (Antonowicz 
et al. 2018; Park et al. 2018; Bang et al. 2019; Chung et al. 

Fig. 3 Meta‑analysis comparing the effects of remote ischaemic preconditioning (RIPC) versus control on postoperative acute kidney injury (AKI) 
(A), serum creatinine (B), and neutrophil gelatinase‑associated lipocalin (NGAL) (C) in patients undergoing non‑cardiac non‑vascular surgery
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2021; Chen et al. 2013; Huang et al. 2013; Nicholson et al. 
2015; Nielsen et al. 2019; Oh et al. 2017).

Postoperative GFR values were documented in 7 stud-
ies. Three of the studies evaluated GFR using technetium 
(99Tcm)-diethylene triamine pentacetic acid (DTPA) 
renal scintigraphy, one study used chrome-ethylenedi-
amine tetraacetic acid (Cr-EDTA) and three studies used 
estimated GFR. There was no difference between the 
intervention and control groups (MD 1.22 mL/min/1.73 
 m2, 95% CI - 0.65 to 3.09, p = 0.20) (Supplemental Fig. 1) 
(Bang et  al. 2019; Chung et  al. 2021; Huang et  al. 2013; 
Nicholson et al. 2015; Nielsen et al. 2019; Hou et al. 2017; 
MacAllister et al. 2015).

Five studies investigated the effect of RIPC on post-
operative neutrophil gelatinase-associated lipocalin 
(NGAL), 2 following laparoscopic partial nephrectomy 
and 3 following renal transplant surgery with RIPC being 
performed on the recipients (Chen et al. 2013; Nicholson 
et al. 2015; Nielsen et al. 2019; Hou et al. 2017; Porpiglia 
et al. 2018). Two studies reported urine NGAL and three 
reported plasma NGAL. Postoperative NGAL was lower 
in the intervention compared to the control group SMD - 
0.66, 95% CI - 1.27 to - 0.06, p = 0.03, I2 = 86% (Fig. 3C).

Postoperative respiratory outcomes
Respiratory outcomes following the use of RIPC in 
NCNV surgery were published in 6 studies, and they 
included the ratio of arterial oxygen partial pressure to 
fractional inspired oxygen  (PaO2/FiO2), the arterial to 
the alveolar partial pressure of oxygen  (PaO2/PAO2), and 
the alveolar-arterial partial pressure of oxygen difference 
 (PAO2-PaO2) (Park et al. 2018; Oh et al. 2017; Garcia-de-
la-Asuncion et al. 2017; Li et al. 2014; Lin et al. 2010; Lin 
et al. 2014). Two of the studies examined lung lobectomy, 
1 lung transplantation, and 3 orthopedic surgery. The 
 PaO2/FiO2 within 6 h postoperatively was published in 5 
studies and was significantly higher in the RIPC group, 
MD 51.51 mmHg, 95% CI 27.32 to 75.69, p < 0.01, I2 = 
89% (Fig.  4A) (Oh et  al. 2017; Garcia-de-la-Asuncion 
et al. 2017; Li et al. 2014; Lin et al. 2010; Lin et al. 2014). 
At 24 h postoperatively, the  PaO2/FiO2 was also higher in 
the RIPC group, MD 26.56 mmHg, and 95% CI - 12.27 to 
65.39, but the difference did not reach statistical signifi-
cance (Garcia-de-la-Asuncion et al. 2017; Lin et al. 2010; 
Lin et al. 2014). Postoperative  PaO2/PAO2 was published 
in 3 studies and was higher in the intervention group, 
MD 12, 95% CI 2.6 to 21.41, p < 0.01 (Fig. 4B) (Garcia-
de-la-Asuncion et al. 2017; Li et al. 2014; Lin et al. 2010). 
Postoperative  PAO2-PaO2 was published in 4 studies, 
three at 6 h postoperatively and one at the end of surgery 
(Park et  al. 2018; Garcia-de-la-Asuncion et  al. 2017; Li 
et al. 2014; Lin et al. 2010). There was no statistically sig-
nificant difference between the intervention and control 

groups, MD - 21.37 mmHg, 95% CI - 44.68 to 1.95, and p 
= 0.07 (Fig. 4C).

Postoperative liver function
Liver outcomes were published in 7 studies, of which 2 
involved liver transplant surgery, 4 liver resections, and 
1 orthopedic surgery (Robertson et  al. 2017; Teo et  al. 
2020; Oh et al. 2017; Jung et al. 2020; Kanoria et al. 2017; 
Liu et  al. 2019; Wu et  al. 2020). Of the transplant stud-
ies, 1 applied RIPC to living donors and 1 to recipients 
(Robertson et  al. 2017; Jung et  al. 2020; Cordero-Pérez 
et  al. 2018). ALT was available from 5 studies includ-
ing patients undergoing liver resections (Teo et al. 2020; 
Jung et al. 2020; Kanoria et al. 2017; Liu et al. 2019; Wu 
et  al. 2020). There was no difference in postoperative 
ALT between the control and intervention groups (MD 
- 43.64 IU/L, 95% CI - 217.28 to 130) (Fig. 5A). Postop-
erative AST was recorded from all 7 studies, and there 
was no difference between the control and intervention 
groups (MD - 17.33 IU/L, 95% -46.79 to 12.13) (Fig. 5B) 
(Robertson et  al. 2017; Teo et  al. 2020; Oh et  al. 2017; 
Jung et al. 2020; Kanoria et al. 2017; Liu et al. 2019; Wu 
et al. 2020). Postoperative bilirubin was available from 4 
studies, 3 related to liver resections and 1 to liver trans-
plant recipients. Postoperative bilirubin was significantly 
lower in the RIPC group (MD -5.71 µmol/L, 95% CI -9.23 
to -2.18, p < 0.01,  I2 = 0) (Fig. 5C) (Robertson et al. 2017; 
Jung et al. 2020; Liu et al. 2019; Wu et al. 2020). A further 
randomised controlled study by Rakic et al. investigated 
the use RIPC in 60 patients undergoing liver resection 
and showed significantly lower postoperative bilirubin 
17.5 vs 26.6 µmol/L, p = 0.031, AST 844.5 vs 978.3 IU/L, 
p = 0.021 and ALT 910.3 vs 1114.3  IU/L, p = 0.005 in 
the intervention vs the control group. However, we were 
unable to include the results in the meta-analysis because 
no measure of variation was reported (Rakic et al. 2018).

Postoperative inflammatory and oxidative stress markers
Levels of Interleukin-6 (IL-6) were published in 9 stud-
ies (Zeggeren et al. 2021; Robertson et al. 2017; Oh et al. 
2017; MacAllister et al. 2015; Li et al. 2014; Lin et al. 2010; 
Murphy et  al. 2010; Oh et  al. 2020; Elano et  al. 2016). 
There was no statistically significant difference between 
the control and intervention groups (SMD - 0.46, 95% 
CI - 1.01 to 0.09) (Supplemental Fig. 2A). Postoperative 
tumor necrosis factor-a (TNF-a) was recorded in 5 stud-
ies. TNF-a was significantly lower in the intervention 
group, SMD - 0.82, 95% CI - 1.47 to - 0.18, p = 0.01, I2 
- = 94% (Supplemental Fig. 2B) (Oh et al. 2017; MacAllis-
ter et al. 2015; Li et al. 2014; Cho et al. 2017; Tosun et al. 
2021). Values of postoperative malondialdehyde (MDA) 
were available from 3 studies, and they were significantly 
lower in the RIPC group (MD - 1.24 µmol/L, 95% CI - 2.4 
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to - 0.07, p = 0.04, I2 = 91%) (Supplemental Fig.  2C) 
(Chen et al. 2013; Lin et al. 2010; Koca et al. 2011).

Postoperative length of hospital stay
Fifteen studies evaluated the postoperative length of 
stay (Antonowicz et  al. 2018; Ekeloef et  al. 2019; Zeg-
geren et al. 2021; Robertson et al. 2017; Chung et al. 2021; 
Chen et al. 2013; Nicholson et al. 2015; MacAllister et al. 
2015; Li et al. 2014; Lin et al. 2010; Jung et al. 2020; Liu 
et al. 2019; He et al. 2017; Krogstrup et al. 2017; Memt-
soudis et  al. 2014). There was a small but statistically 
significant difference favoring the intervention group, 
MD - 0.99 days, 95% CI - 1.75 to - 0.23, p = 0.01, I2 = 
88% (Supplemental Fig. 3). The result potentially carries 
clinical significance, considering the bed availability con-
straints and healthcare costs.

RIPC adverse events
Sixteen studies commented on the presence of adverse 
events related to RIPC (Antonowicz et  al. 2018; Ekeloef 
et al. 2019; Zeggeren et al. 2021; Teo et al. 2020; Chung 
et al. 2021; Chen et al. 2013; Huang et al. 2013; Nicholson 
et al. 2015; MacAllister et al. 2015; Lin et al. 2014; Kano-
ria et  al. 2017; Oh et  al. 2020; Tosun et  al. 2021; Krog-
strup et al. 2017; Krag et al. 2019; Wang et al. 2018). Four 
studies identified adverse events, most of which were 
transient local erythema, petechiae, or bruising (Chen 
et al. 2013; Nicholson et al. 2015; MacAllister et al. 2015; 
Krogstrup et  al. 2017). Chen et  al. reported one patient 
with constriction-type feeling in the treated leg that was 
relieved after 1  day of physical therapy and Krogstrup 
et al. reported one adverse event in a patient in the con-
trol group due to machine malfunctioning resulting in 
uninterrupted inflation (Chen et al. 2013; Krogstrup et al. 
2017).

Fig. 4 Meta‑analysis comparing the effects of remote ischaemic preconditioning (RIPC) versus control on the ratio of arterial oxygen partial 
pressure to fractional inspired oxygen  (PaO2/FiO2) within 6 h postoperatively (A), the arterial to alveolar partial pressure of oxygen  (PaO2/PAO2) (B), 
and the alveolar‑arterial partial pressure of oxygen difference  (PAO2‑PaO2) (C) in patients undergoing non‑cardiac non‑vascular surgery
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A risk of bias analysis and justification for the studies 
included in the meta-analysis and a GRADE summary 
of findings are given in the supplemental material (Sup-
plemental Fig. 4, Supplemental Table 2 and Supplemental 
Table 3).

Discussion
We performed a systematic review of the literature and 
found inadequate evidence on the effect of RIPC on a 
postoperative myocardial injury. The definition of myo-
cardial injury varied between the studies. Three stud-
ies reported the incidence of myocardial injury based 
on prespecified troponin values and showed promis-
ing results with a relative reduction in the incidence 
of postoperative myocardial injury ranging from 16 to 

35%. Our review failed to show any significant differ-
ence in postoperative troponin levels, although only 4 
studies were identified and there was significant sta-
tistical heterogeneity. The beneficial effect of RIPC on 
postoperative cardiac morbidity is supported by two 
recent systematic reviews in cardiac surgery by Ben-
stoem et  al. and Xie et  al. that concluded that RIPC 
reduced the troponin release within the first 72 h after 
surgery (Benstoem et  al. 2017; Xie et  al. 2018). This 
finding is significant as several studies have shown that 
elevated troponin postoperatively is associated with an 
increased risk of mortality both in cardiac and non-
cardiac surgery (Domanski et al. 2015; Devereaux et al. 
2017). As the VISION study investigators showed, even 
mildly raised troponin levels were associated with at 

Fig. 5 Meta‑analysis comparing the effects of remote ischaemic preconditioning (RIPC) versus control on postoperative alanine aminotransferase 
(ALT) (A), aspartate aminotransferase (AST) (B), and bilirubin (C) in patients undergoing non‑cardiac non‑vascular surgery
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least 3 times increased risk of a 30-day mortality and 
the risk increased as the level of troponin increased 
(Devereaux et al. 2017).

Meta-analysis of the identified studies on renal out-
comes showed moderate quality evidence of lower post-
operative creatinine in the RIPC group, but no significant 
difference in either postoperative AKI or GFR. Although 
the clinical significance of a minimal reduction in post-
operative creatinine is uncertain, it is well known that 
the change in serum creatinine is a rather poor and late 
indicator of renal dysfunction as it takes 24–72  h to 
reach levels diagnostic of AKI. Urinary biomarkers on 
the contrary are able to identify patients at risk of AKI 
within hours of the insult to the kidney. A meta-analysis 
of the effect of RIPC on postoperative NGAL showed 
low-quality evidence of lower NGAL levels in the RIPC 
group. NGAL is an early and sensitive marker for the 
development of AKI rising within hours of the renal 
insult; however, the cutoff value varies depending on the 
clinical setting and may be affected by several factors, 
including age, sepsis, and chronic kidney disease (Rizvi 
and Kashani 2017; Bennett et al. 2008). A meta-analysis 
of the use of RIPC in cardiac surgery by Deferrari et al. 
showed that RIPC significantly reduced the incidence of 
AKI in patients undergoing surgery maintained under 
volatile anesthesia (OR 0.57, 95% CI 0.41–0.79) but not in 
patients under propofol anesthesia (Deferrari et al. 2018). 
Zarbock et al. showed that the protective effect of RIPC 
against adverse renal events extended to 90  days post-
operatively and the authors suggested that the failure of 
previous studies to show significant benefit is likely due 
to the use of propofol as well as the preferential beneficial 
effect of RIPC on high-risk patients (Zarbock et al. 2017). 
The clinical significance of our findings is unclear given 
the moderate and low-quality evidence from this meta-
analysis. Additionally, both NGAL and postoperative 
creatinine may not be accurate indicators of renal func-
tion particularly in the perioperative setting. However, 
the potential of RIPC to protect from the development of 
AKI is important as AKI is often followed by the devel-
opment of further complications and even mild (stage 1) 
postoperative AKI is associated with adverse long-term 
outcomes even when the renal function appears to have 
recovered prior to hospital discharge (Singbartl and Joan-
nidis 2015; Mehta et al. 2011; Hobson et al. 2009).

Examining respiratory variables showed moderate 
quality evidence that RIPC has a beneficial effect on 
both  PaO2/FiO2 and  PaO2/PAO2. It has been proposed 
that impaired lung perfusion attributed to one-lung ven-
tilation during lung resection surgery with subsequent 
increase in oxidative stress as well as a rise in inflamma-
tory markers as a result of the surgical stress response 

contribute to postoperative acute lung injury (Garcia-de-
la-Asuncion et al. 2017). Although  PaO2/FiO2 is a surro-
gate endpoint of respiratory function, it has been shown, 
under standardized ventilator settings, to be predictive 
of mortality in patients with ARDS (Villar et al. 2015). In 
the perioperative setting Esteve et al. showed that  PaO2/
FiO2 < 242 at 3  h after cardiac surgery was associated 
with increased incidence of respiratory complications 
and  PaO2/FiO2 < 202 was also associated with increased 
hospital mortality (Esteve et al. 2014). The effect of RIPC 
is potentially clinically significant particularly in patients 
with impaired baseline respiratory function.

Our meta-analysis on the effect of RIPC on hepatic out-
comes showed moderate quality evidence of lower post-
operative bilirubin but no difference in transaminases. 
A systematic review of the effect of local ischaemic pre-
conditioning (Pringle maneuver) of the donor’s liver prior 
to transplantation by Robertson et al. in 2016 showed a 
reduction in liver injury, as indicated by lower AST level 
on day 3 and reduced 1-year mortality at 6 vs 11% (Rob-
ertson et al. 2016). However, a similar review on hepatec-
tomies by Guo et al. in 2017 failed to show a significant 
difference in clinical or biochemical outcomes, although 
the authors suggested there may be some benefit in cir-
rhotic patients (Guo et al. 2017). An isolated lower post-
operative bilirubin is an inadequate indicator of hepatic 
function and likely of small clinical significance.

Meta-analysis of the studies investigating oxidative 
stress and inflammatory markers showed lower TNF-a 
and MDA values postoperatively in the preconditioning 
group; however, the evidence was of low quality. Both 
TNF-a and MDA have been associated with increased 
delirium and cognitive decline postoperatively (Kazmier-
ski and Kloszewska 2010; Wu et al. 2019; Terrando et al. 
2010). Indeed, He et al. showed that RIPC improves the 
cognitive function of elderly patients undergoing bowel 
surgery (He et  al. 2017). Despite this positive finding, 
oxidative stress markers are not currently used in clinical 
practice and remain largely experimental markers.

Finally, RIPC was associated with approximately 1 day 
less stay in the hospital, although the quality of the evi-
dence was moderate as statistical heterogeneity (I2) was 
significant.

This is the first systematic review to assess the effect of 
RIPC in NCNV surgery. Some of the major limitations 
of our study are the significant degree of statistical het-
erogeneity and the small number of studies addressing 
certain outcomes. That likely stems from the diversity 
of surgical procedures included, which is expected given 
that the study of RIPC outside NCNV surgery is limited. 
Additionally, our meta-analysis includes data derived 
from graphs or calculated from published results (e.g., 
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standard deviation from confidence interval) and that 
may have affected the accuracy of the results. Finally, our 
outcomes of interest include several surrogate endpoints 
that may not necessarily correlate well with clinical out-
comes, e.g.,  PaO2/FiO2 vs need for respiratory support 
(Fleming and Powers 2012).

Conclusion
In this systematic review and meta-analysis of the use 
of RIPC in non-cardiac non-vascular surgery, we found 
no evidence that RIPC affects postoperative troponin or 
AKI. There was inadequate evidence to conclude about 
the effect of RIPC on the perioperative myocardial injury.

We found moderate-quality evidence that RIPC is 
associated with lower postoperative creatinine and low-
quality evidence of lower NGAL. We found moderate 
evidence that RIPC is associated with improvement in 
gas exchange based on  PaO2/FiO2 and  PaO2/PAO2. Simi-
larly, moderate evidence was identified that RIPC is asso-
ciated with a reduction in postoperative bilirubin and 
reduced length of hospital stay. We found low-quality 
evidence that RIPC is associated with lower TNF-a and 
MDA.

The results should be interpreted with caution as the 
heterogeneity was considerable, and most outcomes were 
addressed by a small number of studies. Further evidence 
on the use of RIPC in general surgery, particularly as 
regards to its effects on postoperative cardiac and renal 
morbidity including the relevant biomarkers would help 
clarify the role of this simple intervention in the preven-
tion of postoperative morbidity.
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